

SPS Technologies Abington PA March 3, 2025 Daily Surface Water and Outfall Sampling Results Report

SPS Technologies

2025-03-06

Table of Contents

1.	Executive Summary	2
2.	Introduction	3
3.	Site Background	3
4.	Tookany Creek Offsite Investigation	3
4.1	Sampling Locations	3
4.2	Surface Water and Outfall Sampling Field Methodology	3
4.3	Sample Analysis	4
4.4	Surface Water Sampling Daily Results	4
4.5	Outfall Sampling Daily Results	4
5.	Daily Quality Assurance/Quality Control and Management	5
5.1	Field Quality Assurance/Quality Control Requirements	5
5.2	Analytical QA/QC Samples	5
5.3	Data Evaluation	5
6.	References	5

TABLES

Table 1 Daily Surface Water Sampling Results

Table 2 Daily Outfall Sampling Results

FIGURES

Figure 1 Surface Water and Outfall Sample Locations

Figure 2 Downstream Surface Water Sample Locations

Appendices

Appendix A Daily Surface Water Sampling Log

Appendix B Data Validation Report

Appendix C Laboratory Analytical Report

1. Executive Summary

WSP USA Inc. (WSP), on behalf of SPS Technologies Abington PA (SPS), collected five surface water samples and one outfall sample in accordance with SPS's Sampling Plan, which was submitted to the Philadelphia Water Department (PWD), the Pennsylvania Department of Environmental Protection (PADEP), and the United States Environmental Protection Agency (EPA). The samples were submitted to a Pennsylvania-certified analytical laboratory for analysis. The sample locations are shown in the attached **Figures 1** and **2** and the results of the analysis are shown below.

Surface Water Samples:

		Upstream Offsite SW Sample Location 1	Upstream Offsite SW Sample Location 2	SW Sample Location 3	High School Road Sample Location	Downstream SW Sample Location
Parameter	Units	Result	Result	Result	Result	Result
Toluene	mg/L	ND	ND	ND	ND	ND
2-Butanone (MEK)	mg/L	ND	ND	ND	ND	ND
Chromium, Trivalent	mg/L	ND	ND	ND	ND	ND
Chromium, Hexavalent	mg/L	ND	ND	ND	ND	ND
Total Cyanide	mg/L	ND	ND	0.004	ND	ND
Free Cyanide	mg/L	ND	ND	0.004	ND	ND
Oil & Grease	mg/L	ND	ND	ND	ND	ND
Total Chromium	mg/L	0.00035	0.00046	0.00045	0.00022	0.0003
Total Nickel	mg/L	0.00133	0.00095	0.00296	0.00312	0.00191
Dissolved Chromium	mg/L	ND	0.0002	ND	0.0002	ND
Dissolved Nickel	mg/L	ND	ND	0.0016	0.0019	0.0007
Hardness	mg/L	291	253.2	249.3	241	211.3
рН	SU	7.48	7.84	7.01	6.63	5.86

Outfall Samples:

		Outfall 006
Parameter	Units	Result
Toluene	mg/L	ND
2-Butanone (MEK)	mg/L	ND
Chromium, Trivalent	mg/L	ND
Chromium, Hexavalent	mg/L	ND
Total Cyanide	mg/L	ND
Free Cyanide	mg/L	ND
Oil & Grease	mg/L	ND
Total Suspended Solids	mg/L	ND
Nitrate/Nitrite as Nitrogen	mg/L	3.9
Chemical Oxygen Demand	mg/L	8.3
Total Aluminum	mg/L	0.00772
Total Chromium	mg/L	0.00023
Total Copper	mg/L	0.00109
Total Iron	mg/L	0.2461
Total Lead	mg/L	ND
Total Nickel	mg/L	0.00157

Total Zinc	mg/L	0.02318
Dissolved Chromium	mg/L	ND
Dissolved Nickel	mg/L	ND
Hardness	mg/L	216.4
рН	SU	7.08

A detailed description of the sampling procedure, results, and data evaluation are included in this Report. The laboratory data validation reports and the complete laboratory analytical reports, including Quality Assurance/Quality Control (QA/QC) are attached to the Report.

2. Introduction

This Daily Surface Water and Outfall Sampling Results Report (Report) has been prepared by WSP USA Inc. (WSP) on behalf of SPS Technologies Abington PA (SPS), which operates the facility located at 301 Highland Ave, Jenkintown, Pennsylvania, 19046 (the Facility). The purpose of the Report is to provide off-site surface water and outfall sampling results collected in accordance with SPS's Sampling Plan, as prepared by WSP, which was submitted to the Philadelphia Water Department (PWD), the Pennsylvania Department of Environmental Protection (PADEP), and the United States Environmental Protection Agency (EPA) on February 21, 2025 and revised on February 25, 2025 (Sampling Plan). Refer to Sampling Plan **Figures 1** and **2** for sampling locations.

3. Site Background

SPS Technologies currently owns the Site. Operations at the Site consist of manufacturing bolts, nuts, screws, rivets, washers, furniture, and fixtures. Tookany Creek is located south of the SPS building and north of Paxson Ave.

4. Tookany Creek Offsite Investigation

4.1 Sampling Locations

The sampling locations displayed on **Figure 1** and **Figure 2** were selected based on discussions with PWD and PADEP and were identified in the Sampling Plan.

4.2 Surface Water and Outfall Sampling Field Methodology

The surface water and outfall sampling methodology was in accordance with the Sampling Plan.

The surface water and outfall field data collected for the surface water and outfall samples at each sampling location included the following:

- Water depth (for surface water samples only)
- Weather conditions
- Water velocity (if visibly flowing)
- Sample characteristics (clarity, appearance, color, odor, etc.)
- Water quality measurements (DO, pH, salinity, ORP, turbidity, conductivity, and temperature)
- Additional observations (e.g., wildlife sightings)

This data is documented on the daily surface water sampling forms attached in **Appendix A**. The in-field measurements of pH are provided on **Table 1** and **2**.

4.3 Sample Analysis

All samples were submitted to Pace Analytical in Westborough, Massachusetts (Certification No. 68-03671) and Pace Analytical in Mansfield, Massachusetts (Certification No. 68-02089), following chain-of-custody protocols.

4.4 Surface Water Sampling Daily Results

In accordance with the Sampling Plan, surface water samples were analyzed for the following parameters.

- pH (in-field measurement)
- Oil & grease
- Free cyanide
- Total cyanide
- Total nickel
- Dissolved nickel
- Total chromium
- Dissolved chromium
- Hexavalent chromium (speciated)
- Methyl ethyl ketone (MEK)
- Toluene
- Total hardness

The validated daily analytical results from surface water sampling are presented in Table 1.

4.5 Outfall Sampling Daily Results

In accordance with the Sampling Plan and PADEP's comments, outfall samples were analyzed for the following parameters:

- pH (in-field measurement)
- Chemical Oxygen Demand
- Total Suspended Solids
- Nitrate-Nitrite as N
- Total aluminum
- Total copper
- Total iron
- Total lead
- Toluene
- Methyl ethyl ketone (MEK)
- Hexavalent chromium (speciated)
- Total cyanide
- Free cyanide
- Oil & grease
- Total chromium

- Total nickel
- Total zinc
- Dissolved chromium
- Dissolved nickel
- Hardness

The validated daily analytical results from outfall sampling are presented in Table 2.

5. Daily Quality Assurance/Quality Control and Management

5.1 Field Quality Assurance/Quality Control Requirements

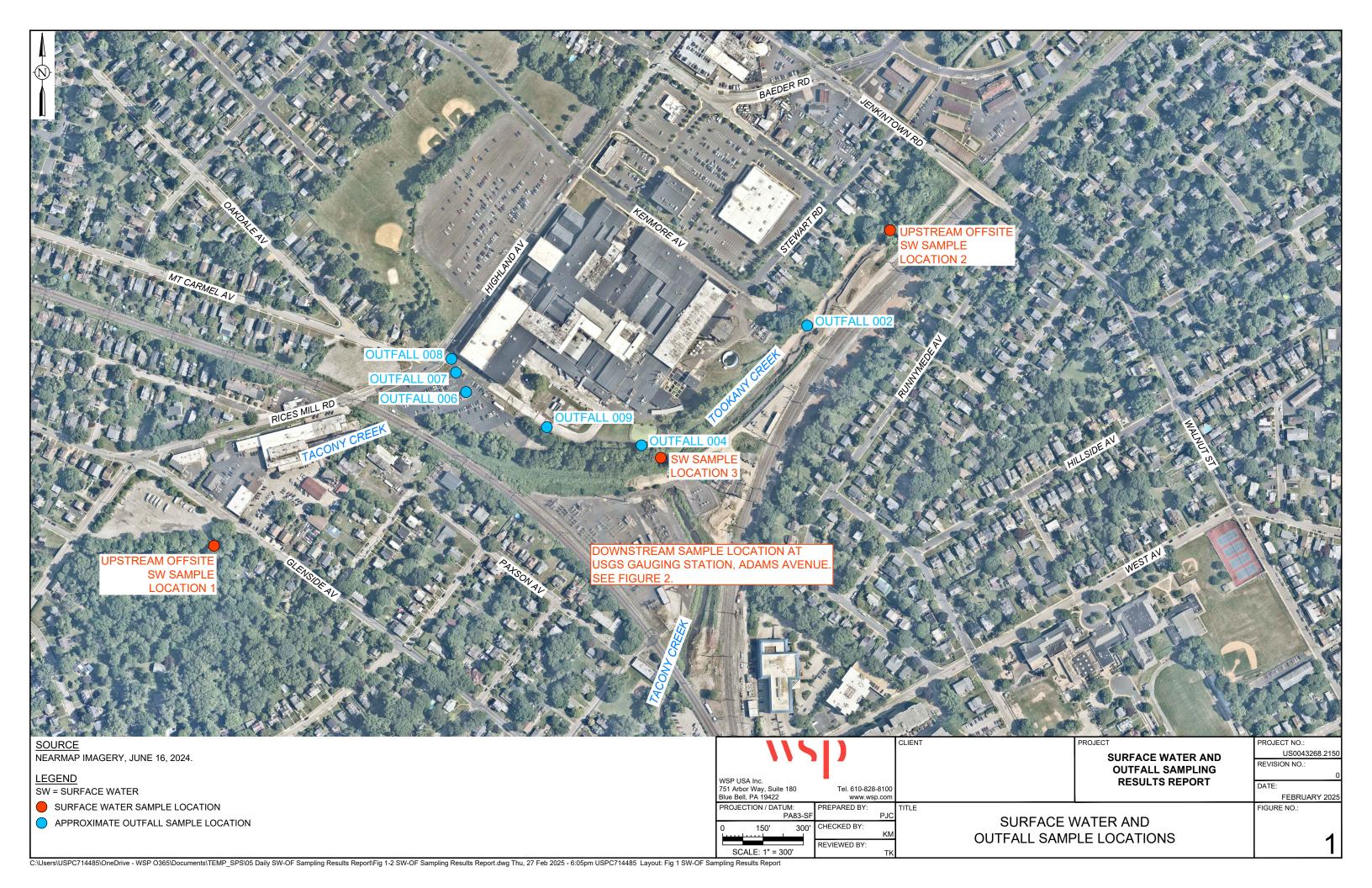
Field personnel performed data quality control (QC) verification of field measurements in consultation with the Pennsylvania Department of Environmental Protection Sampling and Analysis Plan (PADEP, 2023). This process included reviewing calibration records and duplicate readings to ensure data accuracy. Field measurements were documented in notebooks or field information forms. pH readings are also summarized in **Table 1**.

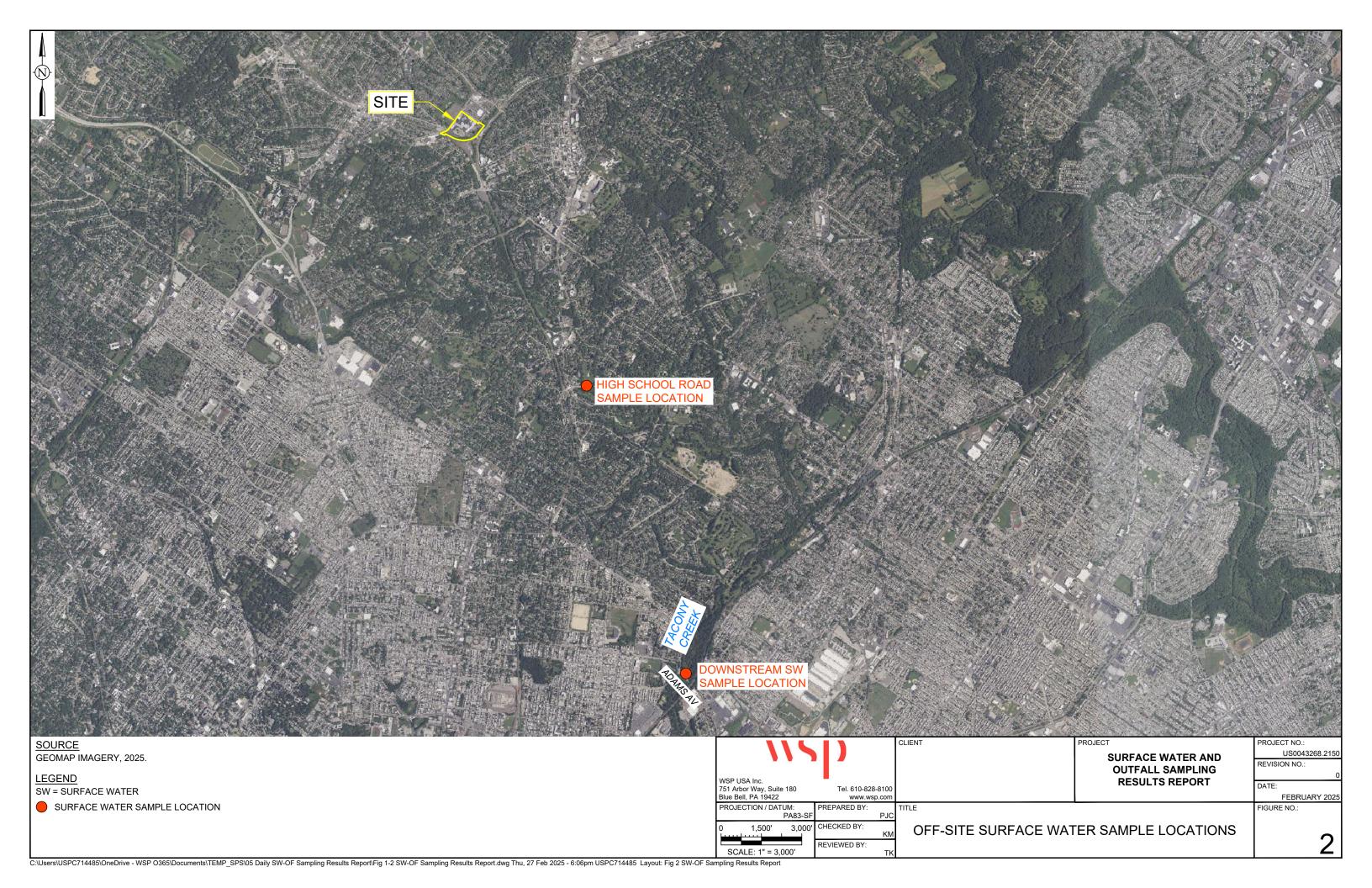
All hand equipment used during the sampling event was cleaned with Alconox and distilled water. Disposable sampling cups were used to collect the samples. Field personnel wore disposable nitrile sampling gloves. Sampling gloves were discarded after processing at each sample location and replaced before handling decontaminated equipment or work surfaces.

5.2 Analytical QA/QC Samples

All quality assurance/quality control (QA/QC), field duplicates (FD), and matrix spikes/matrix spike duplicates (MS/MSD) were collected in accordance with the Sampling Plan.

Trip blanks (TBs) accompanied each shipment of toluene and MEK samples at a rate of one per day. The following QA/QC samples were collected at a rate of 1 per 20 primary samples during each monitoring event: field duplicates (FD) and matrix spikes/matrix spike duplicates (MS/MSD). No field (rinsate) blanks were collected because single-use sample cups were used to collect the samples.


5.3 Data Evaluation


The reliability of the analytical data were evaluated to assess its suitability for use in the monitoring. In particular, the data's precision, accuracy, and sensitivity were evaluated based on field sampling documentation, adherence to sample holding times, and analysis of the QC samples (duplicates, spikes, and blanks). Data validation of the laboratory data was in accordance with the Sampling Plan. The data validation report is attached as **Appendix B**.

6. References

- 1. SPS Technologies, Sampling Plan. 25 Feb. 2025.
- 2. Pennsylvania Department of Environmental Protection. Water Quality Monitoring Protocols for Surface Waters. 2023.

FIGURES & TABLES & APPENDICES

Surface Water Analytical Results Daily Surface Water Sampling Results Report SPS Technologies Jenkintown, Pennsylvania

	Upstream C	ffsite SW	Sample	Upstream O	ffsite SW	Sample	SW	/ Sample		High Scho	ol Road	Sample	Downstre	am SW S	ample		
S	Sample Location	Lo	cation 1		Location 2			Location 3			Location			Location			
	Field Sample ID	SW	2_030325	l	SW	SW1_030325			SW3_030325			SW4_030325			SW5_030325		
	Lab Sample ID	L25	11521-04		L25	11521-05		L2511521-03			L2511521-02			L2511521-01			
	Sampling Date	3	/3/2025		3	/3/2025		3	/3/2025		3	/3/2025		3/3/2025			
	Matrix		Water			Water			Water			Water			Water		
Parameter	Units	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	
Volatile Organic Compo	ounds																
Toluene	mg/L	ND		0.001	ND		0.001	ND		0.001	ND		0.001	ND		0.001	
2-Butanone (MEK)	mg/L	ND		0.01	ND		0.01	ND		0.01	ND		0.01	ND		0.01	
General Chemistry																	
Chromium, Trivalent	mg/L	ND		0.01	ND		0.01	ND		0.01	ND		0.01	ND		0.01	
Chromium, Hexavalent	mg/L	ND		0.01	ND		0.01	ND		0.01	ND		0.01	ND		0.01	
Total Cyanide	mg/L	ND		0.005	ND		0.005	0.004	J	0.005	ND		0.005	ND		0.005	
Free Cyanide	mg/L	ND		0.01	ND		0.01	0.004	J	0.01	ND		0.01	ND		0.01	
Oil & Grease	mg/L	ND		4	ND		4	ND		4.4	ND		4	ND		4	
Total Metals																	
Total Chromium	mg/L	0.00035	J	0.001	0.00046	J	0.001	0.00045	J	0.001	0.00022	J	0.001	0.0003	J	0.001	
Total Nickel	mg/L	0.00133	J	0.002	0.00095	J	0.002	0.00296		0.002	0.00312		0.002	0.00191	J	0.002	
Dissolved Metals																	
Dissolved Chromium	mg/L	ND		0.001	0.0002	J	0.001	ND		0.001	0.0002	J	0.001	ND		0.001	
Dissolved Nickel	mg/L	ND		0.002	ND		0.002	0.0016	J	0.002	0.0019	J	0.002	0.0007	J	0.002	
Total Hardness																	
Hardness	mg/L	291		0.54	253.2	-	0.54	249.3		0.54	241		0.54	211.3		0.54	
Field Parameters																	
pH ¹	SU	7.48			7.84			7.01			6.63			5.86			

Notes:

1.) Field measurements for pH were performed by WSP field personnel prior to sample collection using a Horiba U-52. Field measurements were not validated.

Abbreviations:

mg/L: milligrams per liter

ND: Non-Detect

Q: Qualifier

RL: Reporting Limit SU: Standard Units

Qualifiers:

J - Estimated Result

March 2025 Table 2 Project Number: US0043268.2150

Outfall Analytical Results Daily Surface Water Sampling Results Report SPS Technologies Jenkintown, Pennsylvania

	0		(f - II 000	1	
	Sample Location	Outfall 006			
	Field Sample ID		06_030325 11549-01		
	Lab Sample ID				
	Sampling Date		3/3/2025		
—	Matrix		Water		
Parameter	Units	Result	Q	RL	
Volatile Organic Compounds	1 2				
Toluene	mg/L	ND		0.001	
2-Butanone (MEK)	mg/L	ND		0.01	
General Chemistry					
Chromium, Trivalent	mg/L	ND		0.01	
Chromium, Hexavalent	mg/L	ND		0.01	
Total Cyanide	mg/L	ND		0.005	
Free Cyanide	mg/L	ND		0.01	
Oil & Grease	mg/L	ND		4	
Total Suspended Solids	mg/L	ND		5	
Nitrate/Nitrite as Nitrogen	mg/L	3.9		0.1	
Chemical Oxygen Demand	mg/L	8.3	J	20	
Total Metals					
Total Aluminum	mg/L	0.00772	J	0.01	
Total Chromium	mg/L	0.00023	J	0.001	
Total Copper	mg/L	0.00109		0.001	
Total Iron	mg/L	0.2461		0.05	
Total Lead	mg/L	ND		0.001	
Total Nickel	mg/L	0.00157	J	0.002	
Total Zinc	mg/L	0.02318		0.005	
Dissolved Metals					
Dissolved Chromium	mg/L	ND		0.001	
Dissolved Nickel	mg/L	ND		0.002	
Total Hardness					
Hardness	mg/L	216.4		0.54	
Field Parameters	, , ,				
pH ¹	SU	7.08			
IP''	1 50 1				

Notes.

1.) Field measurements for pH were performed by WSP field personnel prior to sample collection using a Horiba U-52. Field measurements were not validated.

Abbreviations:

mg/L: milligrams per liter

ND: Non-Detect Q: Qualifier

RL: Reporting Limit SU: Standard Units

Qualifiers:

J - Estimated Result

APPENDIX A – DAILY SURFACE WATER AND OUTFALL SAMPLING LOGS

SURFACE WATER/OUTFALL SAMPLE FIELD INFORMATION FORM

Site:	282							A alater		<.	18		The second
Location:	Asinston							Auditio	nai Notes:	-9M.	3-0303	25 5	sheen
Project Number:	11520432 4	8 2150		The state of the s					-	-PTD	0.0	1 11	La de
Meter/Type/Serial #:	Horiba U-52 #	S/N:	5V5	125576						- 415	0.0	2) <11	10 CC W
Meter Calibrated @:		3/3/25	A Company of the Comp										
Flow Meter	FH950 Meter #	S/N:		14100		and the equation of					and the second		
Sampling Date/Time Sampler(s):		0900,	0935	, 1030,	1110,12	.30							
Sampling Device:	BLJET, AKH	-		,			- harry also			Lad .	4-		
Sample Characterist	telescope c	ole to	(irper 1			0/1/2		1000		AND THE	WENT -	000.00	
Analytical Paramete		DI i C	Ism "	10 odi		SW3= Cla	ar, no o	olor,	sheen.				
					16								
				25		The second second		-004		1000			
Weather Conditions:	: (lear 7	6		2	1			1			No. of Contract of	200	0.565
, T. J					4		A 1776						
	11 7039 e. S. 111			1.00	Note 20 P	The same of the same of		1000				William I	
STATION /	STATION			TOTAL	SAMPLE								The second
SAMPLE	DESCRIPTION (stream/lake/river)	DATE	TIME	DEPTH	DEPTH	TEMP	SALINITY	pН	COND	ORP	TURBIDITY	DO	VELOCI [*]
9.15 22m2-		mm/dd/yy	hr:min	inches	- 1. April	Celsius	ppt	SU	mS/cm	mV	NTU	mg/L	ft/sec
SW5_030325	Creek	3/3/25	0900	13.75	6.875	4.16	0.4	5-86	0-748	1273	0.0	9.36	0.91
Sar	mple Characteristics:	clent	1 20	Dolor							0	Sec. 1	
5WH-230325	(reelc	3/3/25		72	36	3.48	2 11	L 12	\ 02 i	1202	100	~ ~	100
			0935	77	10	3.98	2.4	6.63	1.851	4203	0-0	8-62	0.55
	mple Characteristics:	_ /	Cn	o doc								Section 2	Y
363-030325	Cree K	3/3/25	1030	17.0	8.5	4.29	0-3	7:01	0.696	147	0-0	7.30	0.61
	mple Characteristics			heen			17		and the same of th			AKM	
SW2-030325	Creek	3/3/25	1110	6	3	5.72	0.3	7.48	0.660	172	0.0	+2.24	0-24
Sar	mple Characteristics	eleur.	no odo	The state of the s							7	9.08	
5001-23 2325	Creek	3/3/25	1230	13.5	6.75	6.50	0.5	7.84	0.970	159	0.0	8.76	1.97
Sar	mple Characteristics	clear	, no	clor									
and the second								-				. I see a see a see	
2.37					1			Talam I				196	The same of
Water Company of the			_				Table 10.0	Name of the	N. Contractor Contractor		and the second second second		

SURFACE WATER/OUTFALL SAMPLE FIELD INFORMATION FORM

	Ø\$1 4 FH950 Meter #	S/N: 3/3/25 S/N:	SV 512 S						nal Notes				
Sampling Date/Time Sampler(s): Sampling Device: Sample Characteristi Analytical Parameter	AKM, BL, JeT Sipper Ladle ics: 0F006_03032	, IDPK	no odor	•									
Weather Conditions:	Sunny, 30s °F												To the state of th
STATION / SAMPLE	STATION DESCRIPTION (stream/lake/river)	DATE mm/dd/yy	TIME hr:min	TOTAL DEPTH inches	SAMPLE DEPTH	WATER TEMP Celsius	SALINITY	pH SU	COND mS/cm	ORP mV	TURBIDITY NTU	DO mg/L	VELOCITE ft/sec
0F006_030325	- A	3/3/25	1045	_	-	5.64	0.3	7.08	0.671	+121	0.0	7.40	1,13
San	nple Characteristics:	clear, n	70800										
San	nple Characteristics:												
San	pple Characteristics:											<u>u</u>	
San	nple Characteristics:												
San	nple Characteristics												
			and a		Section 1						Allow and the second		
	•		44										

Infet for

Page 1 of 1

117

Pr	oject Name: SPS Technologies		Project Number/Phase/Task: US0043268.2150-USSPS Client Support. Task 01								
Re	eviewing Company: WSP USA	I	Project Manager: Tovah Karl Data Evaluation Date: March 5, 2025 Review Date: March 6, 2025								
Da	ta Evaluator: Candace Cocca	I									
Ch	necked by: Michael Shadle	ļ									
La	boratory: Pace Analytical LLC	ı	Lab \$	SDG #:	L2511549						
Ма	atrix: ⊠ Aqueous □ Soil □ Sediment	□ Was	te	□ Air	☐ Other:						
An	alytical Methods: See Table B-1										
Sa	mple Information: See Table B-1										
Wo	ork Plan or QAPP: SPS Technologies Abington	PA Surf	ace \	Vater a	nd Outfall Sampling Plan (WSP, 2025)						
Da	ta Validation Guidance:										
	USEPA National Functional Guidelines (NFC	G) for Or	gani	c Supe	rfund Methods Data Review (Nov. 2020)						
	USEPA NFG for Inorganic Superfund Metho	ds Data	Rev	iew (No	ov. 2020)						
CC	OC and Sample Receipt	YES	NO	NA	COMMENT						
a)	COC complete and correct?	\boxtimes									
b)	COC documents release of custody (signed and dated)?	\boxtimes									
c)	Field QC types provided (note types)?	\boxtimes			ТВ						
d)	Did the cooler contents match the COC?		\boxtimes		See Note 1						
e)	Were samples received in good condition?	\boxtimes									
f)	Were cooler temperatures within control limits?	\boxtimes									
Da	ta Package Information	YES	NO	NA	COMMENT						
a)	Laboratory name and location documented?	\boxtimes									
b)	All samples on COC reported in data package?	\boxtimes									
c)	Requested analytical methods used?	\boxtimes									
d)	Requested sample preparation methods used?	\boxtimes									
e)	Requested analyte list reported?	\boxtimes									
f)	Requested units reported?	\boxtimes									
g)	Did the laboratory define the qualifiers used?	\boxtimes									
h)	Data package contains all information necessary to complete the data quality review?	\boxtimes									
An	nalytical Assessment	YES	NO	NA	COMMENT						
a)	Solid samples reported on a dry-weight basis?			\boxtimes							
b)	Were solid samples percent moisture criteria acceptable?			\boxtimes							
c)	Were sample dilutions noted?	\square									

Project Name: SPS Technologies

An	nalytical Assessment	YES	NO	NA	COMMENT
d)	Were detected concentrations less than the QL qualified by the laboratory?	\boxtimes			
e)	Were detected concentrations above the calibration range reported by the laboratory?		\boxtimes		
f)	Did the laboratory satisfy the requested sensitivity requirements?	\boxtimes			
La	boratory Case Narrative	YES	NO	NA	COMMENT
a)	Do the laboratory narrative or laboratory qualifiers indicate deficiencies?		\boxtimes		
b)	Were all deficiencies noted in the laboratory qualifiers or narrative?	\boxtimes			
Sa	mple Preservation and Holding Time	YES	NO	NA	COMMENT
a)	Were samples properly preserved?	\boxtimes			
b)	Were holding times met for sample preparation?	\boxtimes			
c)	Were holding times met for sample analysis?	\boxtimes			
Bla	anks	YES	NO	NA	COMMENTS
a)	Were blanks analyzed at the appropriate frequency?	\boxtimes			
b)	Were any analytes detected in the associated preparation/method blank?		\boxtimes		
c)	Were any analytes detected in the associated trip blanks?		\boxtimes		
d)	Were any analytes detected in the associated field or equipment/rinsate blanks?			\boxtimes	
e)	Were any analytes detected in the associated storage blanks?			\boxtimes	
	rrogates or Deuterated Monitoring	YES	NO	NA	COMMENTS
a)	Were the correct surrogate compounds added to each sample?	\boxtimes			
b)	Were surrogate recoveries within control limits?	\boxtimes			
c)	If not, were samples analyzed at dilution factors of 20x or greater?			\boxtimes	
LC	S/LCSD	YES	NO	NA	COMMENTS
a)	Were LCS/LCSD reported at the appropriate frequency?	\boxtimes			
b)	Were proper analytes included in the LCS/LCSD?	\boxtimes			
c)	Were LCS/LCSD recoveries within control limits?	\boxtimes			
d)	Were RPD values within control limits (if LCSD was analyzed)?			\boxtimes	
MS	S/MSDs	YES	NO	NA	COMMENTS
a)	Were project-specific MS (and MSD) reported?	\boxtimes			OF006_030325 (nitrate-nitrite, cyanide, chemical oxygen demand only)
b)	Were proper analytes reported in the MS/MSD?	\boxtimes			,0: -: -: 3,7

MS	s/MSDs	YES	NO	NA	COMMENTS
c)	Were project-specific MS/MSD recoveries within control limits?	\boxtimes			
d)	If not, were sample concentrations greater than 4x the spiking concentration?			\boxtimes	
e)	Was the RPD or absolute difference within control limits (if project-specific MSD analyzed)?			\boxtimes	
f)	Were project-specific post-digestion spikes analyzed?			\boxtimes	
g)	Were project-specific post-digestion spike recoveries within control limits?			\boxtimes	
Du	plicates	YES	NO	NA	COMMENTS
a)	Were project-specific laboratory duplicates reported?	\boxtimes			OF006_030325 (nitrate-nitrite, cyanide, chemical oxygen demand only)
b)	Was laboratory duplicate RPD or absolute difference criteria acceptable?	\boxtimes			
c)	Were field duplicates reported?		\boxtimes		
d)	Was field duplicate RPD or absolute difference criteria acceptable?			\boxtimes	
ICF	P Serial Dilution (SD)	YES	NO	NA	COMMENTS
a)	Was project-specific ICP SD data provided?			\boxtimes	
b)	Were project-specific ICP SD within acceptable criteria?			\boxtimes	
Ov	erall Evaluation	YES	NO	NA	COMMENTS
a)	Were there any other technical problems not previously addressed?	\boxtimes			
b)	Were data acceptable and usable, except where noted?	\boxtimes			

Comments/Notes:

The reliability of the analytical data was evaluated to assess its suitability for use. In particular, a Stage 2A data validation was performed, which evaluates the data's precision, accuracy, and sensitivity based on adherence to sample holding times and analysis of the QC samples (duplicates, spikes, and blanks). Where appropriate, data qualifiers were applied following USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (Nov. 2020) and USEPA NFG for Inorganic Superfund Methods Data Review (Nov. 2020), as applicable to the analytical methods used by the laboratory. Based on the data review, the data was deemed suitable for project decision making as reported by the laboratory.

Data Qualification: No qualifications

March 2025 Table B-1 US0043268.2150

Sample Collection and Analysis Summary SPS Technologies Jenkintown, PA

									A	nalyses/F	Paramet	ers					
						MEK and Toluene	Chemical Oxygen Demand	Total Suspended Solids	Nitrate-Nitrite as N	Oil and Grease	Total Metals	Dissolved Metals	Total Hardness	Free Cyanide	Total Cyanide	Trivalent Chromium	Hexavalent Chromium
Laboratory			Lab		Collection			SM						SM	SM	SM	SM
Job	Field Identification	Matrix	Identification	QC Samples	Date	E624.1	E410.4	2540D	E353.2	E1664B	200.8	200.8	200.8	4500C	4500C	3500	3500C
L2511549	OF006_030325	WS	L2511549-01		3/3/2025	Х	Х	Х	Х	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ
L2511549	TBOF 030325	WQ	L2511549-02	TB	3/3/2025	X											

Notes:

- 1) Metal analyses were performed by Pace Analytical Mansfield Lab, all other parameters were performed at Pace Analytical Westborough Lab.
- 2) Total Metals include: aluminum, copper, chromium, iron, lead, nickel, and zinc.
- 3) Dissovled Metals include: chromium and nickel.

Abbreviations:

MEK: methyl ethyl ketone (2-butanone)
MS/MSD: Matrix Spike/Matrix Spike Duplicate

QC: Quality Control SM: Standard Methods TB: Trip Blank WS: Surface Water

WQ: Quality Control Water

Qualifier Summary Table

Laboratory Job	Sample Name	Analyte	New Result	New MDL	New RL	Qualifier	Reason
			No Qualifiers Re	equired.			
L2511549	All samples				1	ł	Laboratory applied U-qualifiers indicating non-detect results and J-qualifiers indicating results below the reporting limit are retained unless other qualifications are indicated in this table. All other laboratory qualifiers are removed.

Abbreviations: MDL: Method Detection Limit

RL: Reporting Limit

Pro	oject Name: SPS Technologies		•		mber/Phase/Task: US0043268.2150-US- Support. Task 01
Re	viewing Company: WSP USA	I	Proje	ect Mar	nager: Tovah Karl
Da	ta Evaluator: Julia Campbell	ı	Data	Evalua	ation Date: March 5, 2025
Ch	ecked by: Michael Shadle	ı	Revi	ew Dat	e: March 6, 2025
La	boratory: Pace Analytical LLC	I	Lab \$	SDG #:	L2511521
Ма	t rix: ⊠ Aqueous □ Soil □ Sediment □] Was	te	□ Air	☐ Other:
An	alytical Methods: See Table B-1				
Sa	mple Information: See Table B-1				
Wc	ork Plan or QAPP: SPS Technologies Abington Pa	A Surf	ace \	Water a	and Outfall Sampling Plan (WSP, 2025)
Da	ta Validation Guidance:				
	USEPA National Functional Guidelines (NFG)	for Or	gani	c Supe	rfund Methods Data Review (Nov. 2020)
	USEPA NFG for Inorganic Superfund Methods	s Data	Rev	iew (No	ov. 2020)
CC	OC and Sample Receipt	YES	NO	NΔ	COMMENT
	COC complete and correct?	⊠		МА	OOMMENT.
,	COC documents release of custody (signed and dated)?	\boxtimes			
c)		\boxtimes		\boxtimes	TB; See Table B-1
d)	Did the cooler contents match the COC?	\boxtimes			
e)	Were samples received in good condition?	\boxtimes			
f)	Were cooler temperatures within control limits?	\boxtimes			
Da	ta Package Information	YES	NO	NA	COMMENT
a)	Laboratory name and location documented?	\boxtimes			
b)	All samples on COC reported in data package?	\boxtimes			
c)	Requested analytical methods used?	\boxtimes			See Note 1
d)	Requested sample preparation methods used?	\boxtimes			
e)	Requested analyte list reported?	\boxtimes			
f)	Requested units reported?	\boxtimes			
g)	Did the laboratory define the qualifiers used?	\boxtimes			
h)	Data package contains all information necessary to complete the data quality review?	\boxtimes			
An	alytical Assessment	YES	NO	NA	COMMENT
a)	Solid samples reported on a dry-weight basis?			\boxtimes	
b)	Were solid samples percent moisture criteria acceptable?				
c)	Were sample dilutions noted?	\boxtimes			
d)	Were detected concentrations less than the QL qualified by the laboratory?	\boxtimes			

wsp

An	alytical Assessment	YES	NO	NA	COMMENT
e)	Were detected concentrations above the calibration range reported by the laboratory?		\boxtimes		
f)	Did the laboratory satisfy the requested sensitivity requirements?	\boxtimes			
La	boratory Case Narrative	YES	NO	NA	COMMENT
a)	Do the laboratory narrative or laboratory qualifiers indicate deficiencies?		\boxtimes		
b)	Were all deficiencies noted in the laboratory qualifiers or narrative?	\boxtimes			
Sa	mple Preservation and Holding Time	YES	NO	NA	COMMENT
a)	Were samples properly preserved?	\boxtimes			
b)	Were holding times met for sample preparation?	\boxtimes			
c)	Were holding times met for sample analysis?	\boxtimes			
Bla	anks	YES	NO	NA	COMMENTS
a)	Were blanks analyzed at the appropriate frequency?	\boxtimes			
b)	Were any analytes detected in the associated preparation/method blank?		\boxtimes		
c)	Were any analytes detected in the associated trip blanks?		\boxtimes		
d)	Were any analytes detected in the associated field or equipment/rinsate blanks?			\boxtimes	
e)	Were any analytes detected in the associated storage blanks?				
	rrogates or Deuterated Monitoring mpounds	YES	NO	NA	COMMENTS
a)	Were the correct surrogate compounds added to each sample?	\boxtimes			
b)	Were surrogate recoveries within control limits?	\boxtimes			
c)	If not, were samples analyzed at dilution factors of 20x or greater?			\boxtimes	
LC	S/LCSD	YES	NO	NA	COMMENTS
a)	Were LCS/LCSD reported at the appropriate frequency?	\boxtimes			
b)	Were proper analytes included in the LCS/LCSD?	\boxtimes			
c)	Were LCS/LCSD recoveries within control limits?	\boxtimes			
d)	Were RPD values within control limits (if LCSD was analyzed)?			\boxtimes	
MS	s/MSDs	YES	NO	NA	COMMENTS
a)	Were project-specific MS (and MSD) reported?	\boxtimes			SW5_030325 (Total metals, hardness, Chrom Hex), SW2_030325 (Total cyanide), SW4_030325 (oil & grease)

MS	s/MSDs	YES	NO	NA	COMMENTS
b)	Were proper analytes reported in the MS/MSD?	\boxtimes			
c)	Were project-specific MS/MSD recoveries within control limits?	\boxtimes			
d)	If not, were sample concentrations greater than 4x the spiking concentration?			\boxtimes	
e)	Was the RPD or absolute difference within control limits (if project-specific MSD analyzed)?			\boxtimes	
f)	Were project-specific post-digestion spikes analyzed?			\boxtimes	
g)	Were project-specific post-digestion spike recoveries within control limits?			\boxtimes	
Du	plicates	YES	NO	NA	COMMENTS
a)	Were project-specific laboratory duplicates reported?	\boxtimes			SW5_030325 (Total metals, hardness, Chrom Hex, oil & grease), SW2_030325 (Total cyanide)
b)	Was laboratory duplicate RPD or absolute difference criteria acceptable?	\boxtimes			
c)	Were field duplicates reported?		\boxtimes		
d)	Was field duplicate RPD or absolute difference criteria acceptable?			\boxtimes	
ICF	Serial Dilution (SD)	YES	NO	NA	COMMENTS
a)	Was project-specific ICP SD data provided?			\boxtimes	
b)	Were project-specific ICP SD within acceptable criteria?			\boxtimes	
Ov	erall Evaluation	YES	NO	NA	COMMENTS
a)	Were there any other technical problems not previously addressed?		\boxtimes		
b)	Were data acceptable and usable, except where noted?	\boxtimes			

Comments/Notes:

The reliability of the analytical data was evaluated to assess its suitability for use. In particular, a Stage 2A data validation was performed, which evaluates the data's precision, accuracy, and sensitivity based on adherence to sample holding times and analysis of the QC samples (duplicates, spikes, and blanks). Where appropriate, data qualifiers were applied following USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (Nov. 2020) and USEPA NFG for Inorganic Superfund Methods Data Review (Nov. 2020), as applicable to the analytical methods used by the laboratory. Based on the data review, while estimated qualifiers were applied to certain data as detailed in Table B-2, all data was deemed suitable for project decision making. Further detail can be found in the comments below and in Table B-2.

Data Qualification: See Table B-2

Sample Collection and Analysis Summary SPS Technologies Jenkintown, PA

						-		Analys	es/Parai	meters				
						MEK and Toluene	Oil and Grease	Total Metals	Dissolved Metals	Total Hardness	Free Cyanide	Total Cyanide	Trivalent Chromium	Hexavalent Chromium
Laboratory			Lab		Collection			•			SM	SM	SM	SM
Job	Field Identification	Matrix	Identification	QC Samples	Date	E624.1	E1664B	200.8	200.8	200.8	4500C	4500C	3500	3500C
L2511521	SW5_030325	WS	L2511521-01		3/3/2025	Х	Χ	Χ	Х	Χ	Χ	Х	Х	Х
L2511521	SW4_030325	WS	L2511521-02		3/3/2025	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х
L2511521	SW3_030325	WS	L2511521-03		3/3/2025	Х	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ
L2511521	SW2_030325	WS	L2511521-04		3/3/2025	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
L2511521	SW1_030325	WS	L2511521-05		3/3/2025	Χ	Χ	Χ	Χ	Χ	Χ	X	Χ	Χ
L2511521	TBSW_030325	WQ	L2511521-06	TB	3/3/2025	Х							-	

Notes:

- 1) Metal analyses were performed by Pace Analytical Mansfield Lab, all other parameters were performed at Pace Analytical Westborough Lab.
- 2) Total Metals include: chromium and nickel.
- 3) Dissolved Metals include: chromium and nickel.

Abbreviations:

FD: Field duplicate

MEK: methyl ethyl ketone (2-butanone)

MS/MSD: Matrix Spike/Matrix Spike Duplicate

QC: Quality Control SM: Standard Methods

TB: Trip Blank WS: Surface Water

WQ: Quality Control Water

Qualifier Summary Table SPS Technolgies Jenkintown, PA

Laboratory Job	Sample Name	Analyte	New Result	New MDL	New RL	Qualifier	Reason
L2511521			N	lo Qualifiers	Required.		
L2511521	All samples					1	Laboratory applied U-qualifiers indicating non-detect results and J-qualifiers indicating results below the reporting limit are retained unless other qualifications are indicated in this table. All other laboratory qualifiers are removed.

Abbreviations:
MDL: Method Detection Limit RL:

Reporting Limit

APPENDIX C – LABORATORY ANALYTICAL REPORTS

ANALYTICAL REPORT

Lab Number: L2511521

Client: WSP USA Inc.

401 Route 73 North

Suite 205

Marlton, NJ 08053

ATTN: Tovah Karl

Phone: () -

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Report Date: 03/05/25

The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

 Lab Number:
 L2511521

 Report Date:
 03/05/25

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2511521-01	SW5_030325	WATER	JENKINTOWN, PA	03/03/25 09:00	03/03/25
L2511521-02	SW4_030325	WATER	JENKINTOWN, PA	03/03/25 09:35	03/03/25
L2511521-03	SW3_030325	WATER	JENKINTOWN, PA	03/03/25 10:30	03/03/25
L2511521-04	SW2_030325	WATER	JENKINTOWN, PA	03/03/25 11:10	03/03/25
L2511521-05	SW1_030325	WATER	JENKINTOWN, PA	03/03/25 12:30	03/03/25
L2511521-06	TBSW_030325	WATER	JENKINTOWN, PA	03/03/25 00:00	03/03/25

Project Name:SPS TECHNOLOGIESLab Number:L2511521Project Number:US0043268.2150Report Date:03/05/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:SPS TECHNOLOGIESLab Number:L2511521Project Number:US0043268.2150Report Date:03/05/25

Case Narrative (continued)

Report Submission

March 05, 2025: This final report includes the results of all requested analyses.

March 04, 2025: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Lelly Well Kelly O'Neill

Authorized Signature:

Title: Technical Director/Representative

Date: 03/05/25

Pace

ORGANICS

VOLATILES

Project Name: SPS TECHNOLOGIES Lab Number: L2511521

SAMPLE RESULTS

Lab ID: L2511521-01 Date Collected: 03/03/25 09:00

Client ID: SW5_030325 Date Received: 03/03/25 Sample Location: JENKINTOWN, PA Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 03/04/25 11:50

Analyst: JKH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	Westborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Pentafluorobenzene	83		60-140
Fluorobenzene	74		60-140
4-Bromofluorobenzene	116		60-140

L2511521

03/03/25 09:35

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

SAMPLE RESULTS

Report Date: 03/05/25

Lab Number:

Date Collected:

Lab ID: L2511521-02 Client ID: SW4_030325

Sample Location: JENKINTOWN, PA Date Received: 03/03/25 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 03/04/25 11:18

Analyst: JKH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Pentafluorobenzene	84		60-140
Fluorobenzene	72		60-140
4-Bromofluorobenzene	117		60-140

L2511521

Not Specified

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

SAMPLE RESULTS

03/05/25

Report Date:

Lab Number:

Field Prep:

Lab ID: L2511521-03 Client ID: SW3_030325

Sample Location: JENKINTOWN, PA Date Collected: 03/03/25 10:30 Date Received: 03/03/25

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 03/04/25 10:46

Analyst: JKH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Toluene	ND		mg/l	0.0010	0.00031	1	
2-Butanone	ND		mg/l	0.010	0.0010	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Pentafluorobenzene	84		60-140
Fluorobenzene	72		60-140
4-Bromofluorobenzene	120		60-140

Project Name: SPS TECHNOLOGIES Lab Number: L2511521

SAMPLE RESULTS

Lab ID: L2511521-04 Date Collected: 03/03/25 11:10

Client ID: SW2_030325 Date Received: 03/03/25 Sample Location: JENKINTOWN, PA Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 03/04/25 10:15

Analyst: JKH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	Westborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	83		60-140	
Fluorobenzene	72		60-140	
4-Bromofluorobenzene	112		60-140	

03/03/25 12:30

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

SAMPLE RESULTS

Lab Number: L2511521

Report Date: 03/05/25

Lab ID: L2511521-05

Client ID: SW1_030325 Sample Location: JENKINTOWN, PA Date Received: 03/03/25 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 03/04/25 09:42

Analyst: JKH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Pentafluorobenzene	82		60-140
Fluorobenzene	76		60-140
4-Bromofluorobenzene	118		60-140

Project Name: SPS TECHNOLOGIES Lab Number: L2511521

SAMPLE RESULTS

Lab ID: L2511521-06 Date Collected: 03/03/25 00:00

Client ID: TBSW_030325 Date Received: 03/03/25
Sample Location: JENKINTOWN, PA Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 03/04/25 09:09

Analyst: JKH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	Westborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	86		60-140	
Fluorobenzene	76		60-140	
4-Bromofluorobenzene	118		60-140	

Project Name: SPS TECHNOLOGIES Lab Number: L2511521

Project Number: US0043268.2150 **Report Date:** 03/05/25

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 03/04/25 08:02

Analyst: JKH

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	borough Lat	for sample	e(s): 01-06	Batch:	WG2036546-4	
Toluene	ND		mg/l	0.0010	0.00031	
2-Butanone	ND		mg/l	0.010	0.0010	

		Acceptance	
Surrogate	%Recovery 0	Qualifier Criteria	
Pentafluorobenzene	95	60-140	
Fluorobenzene	83	60-140	
4-Bromofluorobenzene	110	60-140	

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number:

L2511521

Report Date:

<u>Para</u>	ameter	LCS %Recovery	Qual	LCSE %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Vol	atile Organics by GC/MS - Westborougl	n Lab Associat	ed sample(s):	: 01-06	Batch:	WG2036	6546-3				
	Toluene	110		-			70-130	-		41	
	2-Butanone	82		-			60-140	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	98			60-140
Fluorobenzene	93			60-140
4-Bromofluorobenzene	109			60-140

METALS

SAMPLE RESULTS

 Lab ID:
 L2511521-01
 Date Collected:
 03/03/25 09:00

 Client ID:
 SW5_030325
 Date Received:
 03/03/25

 Sample Location:
 JENKINTOWN, PA
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	result	quannon	Onno		MDL		•				Allalyst
Total Metals - Mans	field Lab										
Chromium, Total	0.00030	J	mg/l	0.00100	0.00017	1	03/04/25 07:33	03/04/25 11:28	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00191	J	mg/l	0.00200	0.00055	1	03/04/25 07:33	03/04/25 11:28	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculation	n) - Mansfi	eld Lab								
Hardness	211.3		mg/l	0.5400	NA	1	03/04/25 07:33	03/04/25 11:28	EPA 3005A	3,200.8	NTB
General Chemistry -	Mansfield	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/04/25 11:28	NA	107,-	
Dissolved Metals - N	/lansfield l	Lab									
Chromium, Dissolved	ND		mg/l	0.0010	0.0002	1	03/05/25 06:11	03/05/25 09:47	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.0007	J	mg/l	0.0020	0.0006	1	03/05/25 06:11	03/05/25 09:47	EPA 3005A	3,200.8	NTB

SAMPLE RESULTS

 Lab ID:
 L2511521-02
 Date Collected:
 03/03/25 09:35

 Client ID:
 SW4_030325
 Date Received:
 03/03/25

 Sample Location:
 JENKINTOWN, PA
 Field Prep:
 Not Specified

Sample Depth:

Davamatan	Danult	Ovelities	Unita	D.	MDI	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	A I 4
Parameter	Result	Qualifier	Units	RL	MDL		Тторигои	Allaryzea	- Inclined		Analyst
Total Metals - Mans	field Lab										
Chromium, Total	0.00022	J	mg/l	0.00100	0.00017	1	03/04/25 07:33	03/04/25 11:41	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00312		mg/l	0.00200	0.00055	1	03/04/25 07:33	03/04/25 11:41	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculation	n) - Mansfi	eld Lab								
Hardness	241.0		mg/l	0.5400	NA	1	03/04/25 07:33	03/04/25 11:41	EPA 3005A	3,200.8	NTB
General Chemistry -	Mansfield	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/04/25 11:41	NA	107,-	
Dissolved Metals - N	/lansfield	Lab									
Chromium, Dissolved	0.0002	J	mg/l	0.0010	0.0002	1	03/05/25 06:11	03/05/25 10:01	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.0019	J	mg/l	0.0020	0.0006	1	03/05/25 06:11	03/05/25 10:01	EPA 3005A	3,200.8	NTB

SAMPLE RESULTS

 Lab ID:
 L2511521-03
 Date Collected:
 03/03/25 10:30

 Client ID:
 SW3_030325
 Date Received:
 03/03/25

 Sample Location:
 JENKINTOWN, PA
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	TOOUT	quamici	Omio		MDL		·				Allalyst
Total Metals - Mans	field Lab										
Chromium, Total	0.00045	J	mg/l	0.00100	0.00017	1	03/04/25 07:33	03/04/25 11:46	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00296		mg/l	0.00200	0.00055	1	03/04/25 07:33	03/04/25 11:46	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculation	n) - Mansfie	eld Lab								
Hardness	249.3		mg/l	0.5400	NA	1	03/04/25 07:33	03/04/25 11:46	EPA 3005A	3,200.8	NTB
General Chemistry -	Mansfield	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/04/25 11:46	NA	107,-	
Dissolved Metals - N	/lansfield l	Lab									
Chromium, Dissolved	ND		mg/l	0.0010	0.0002	1	03/05/25 06:11	03/05/25 10:06	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.0016	J	mg/l	0.0020	0.0006	1	03/05/25 06:11	03/05/25 10:06	EPA 3005A	3,200.8	NTB

SAMPLE RESULTS

 Lab ID:
 L2511521-04
 Date Collected:
 03/03/25 11:10

 Client ID:
 SW2_030325
 Date Received:
 03/03/25

 Sample Location:
 JENKINTOWN, PA
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	Trocuit	- Cuamio					·	-			Allaryot
Total Metals - Mans	field Lab										
Chromium, Total	0.00035	J	mg/l	0.00100	0.00017	1	03/04/25 07:33	03/04/25 11:50	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00133	J	mg/l	0.00200	0.00055	1	03/04/25 07:33	03/04/25 11:50	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculation	n) - Mansfie	eld Lab								
Hardness	291.0		mg/l	0.5400	NA	1	03/04/25 07:33	03/04/25 11:50	EPA 3005A	3,200.8	NTB
General Chemistry -	Mansfield	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/04/25 11:50	NA	107,-	
Dissolved Metals - N	/lansfield l	Lab									
Chromium, Dissolved	ND		mg/l	0.0010	0.0002	1	03/05/25 06:11	03/05/25 10:11	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	ND		mg/l	0.0020	0.0006	1	03/05/25 06:11	03/05/25 10:11	EPA 3005A	3,200.8	NTB

SAMPLE RESULTS

 Lab ID:
 L2511521-05
 Date Collected:
 03/03/25 12:30

 Client ID:
 SW1_030325
 Date Received:
 03/03/25

 Sample Location:
 JENKINTOWN, PA
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Chromium, Total	0.00046	J	mg/l	0.00100	0.00017	1	03/04/25 07:33	03/04/25 11:55	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00095	J	mg/l	0.00200	0.00055	1	03/04/25 07:33	03/04/25 11:55	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculation	n) - Mansfie	eld Lab								
Hardness	253.2		mg/l	0.5400	NA	1	03/04/25 07:33	03/04/25 11:55	EPA 3005A	3,200.8	NTB
General Chemistry -	Mansfield	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/04/25 11:55	NA	107,-	
Dissolved Metals - N	/lansfield l	_ab									
Chromium, Dissolved	0.0002	J	mg/l	0.0010	0.0002	1	03/05/25 06:11	03/05/25 10:15	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	ND		mg/l	0.0020	0.0006	1	03/05/25 06:11	03/05/25 10:15	EPA 3005A	3,200.8	NTB

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number:

L2511521

Report Date: 03/05/25

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01-05 E	Batch: WO	320363	20-1				
Chromium, Total	ND	mg/l	0.00100	0.00017	1	03/04/25 07:33	03/04/25 11:19	3,200.8	NTB
Nickel, Total	ND	mg/l	0.00200	0.00055	5 1	03/04/25 07:33	03/04/25 11:19	3,200.8	NTB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness (by ca	lculation) - Mansfield L	ab for sa	ample(s):	01-05	Batch: W	VG2036320-1			
Hardness	ND	mg/l	0.5400	NA	1	03/04/25 07:33	03/04/25 11:19	3,200.8	NTB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	ansfield Lab	for sample	(s): 01-0	5 Batch	: WG2	036490-1				
Chromium, Dissolved	ND		mg/l	0.0010	0.0002	! 1	03/05/25 06:11	03/05/25 09:38	3,200.8	NTB
Nickel, Dissolved	ND		mg/l	0.0020	0.0006	5 1	03/05/25 06:11	03/05/25 09:38	3,200.8	NTB

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number:

L2511521

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated san	nple(s): 01-05	Batch: W	G2036320-2					
Chromium, Total	102		-		85-115	-		
Nickel, Total	104		-		85-115	-		
Total Hardness (by calculation) - Mansfield L	ab Associated	sample(s)	: 01-05 Batch: V	VG2036320-2	2			
Hardness	96		-		85-115	-		
Dissolved Metals - Mansfield Lab Associated	d sample(s): 01	-05 Batc	h: WG2036490-2					
Chromium, Dissolved	107		-		85-115	-		
Nickel, Dissolved	105		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number:

L2511521

Report Date:

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		overy mits	RPD G	RPD Qual Limits
Total Metals - Mansfield Lab As	sociated sam	ple(s): 01-0	5 QC Bat	tch ID: WG203	6320-3	QC Sam	nple: L2511521-0	1 Client	ID: SW	/5_03032	25
Chromium, Total	0.00030J	0.2	0.2056	103		-	-	70	-130	-	20
Nickel, Total	0.00191J	0.5	0.5220	104		-	-	70	-130	-	20
Total Hardness (by calculation)	- Manefield I	ah Associat	ad sample	(s)· 01-05 OC	Ratch I	D. MC303	86320-3 OC S	amnla: I 2F	11521_	.01 Clie	nt ID:
Total Hardness (by calculation) SW5_030325 Hardness	- Mansfield L	ab Associat 66.2	ed sample(274.2	(s): 01-05 QC	Batch I	D: WG203	36320-3 QC Sa -	ample: L25	5 11521- -130	·01 Clie	ent ID:
SW5_030325	211.3	66.2	274.2			-	36320-3 QC Sa - Sample: L25115	70	-130		20
SW5_030325 Hardness	211.3	66.2	274.2	95		-	<u>-</u>	70 521-01 C	-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number:

L2511521

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-0	05 QC Batch ID: W	G2036320-4 QC Sample:	L2511521-01	Client ID:	: SW5_030325
Chromium, Total	0.00030J	0.00023J	mg/l	NC	20
Nickel, Total	0.00191J	0.00215	mg/l	NC	20
Total Hardness (by calculation) - Mansfield Lab Associat SW5_030325	red sample(s): 01-05	QC Batch ID: WG203632	20-4 QC Sam	ple: L251	1521-01 Client ID:
Hardness	211.3	212.5	mg/l	1	20
Dissolved Metals - Mansfield Lab Associated sample(s):	01-05 QC Batch ID): WG2036490-4 QC Sar	mple: L251152	1-01 Clier	nt ID: SW5_030325
Chromium, Dissolved	ND	ND	mg/l	NC	20
Nickel, Dissolved	0.0007J	0.0007J	mg/l	NC	20

INORGANICS & MISCELLANEOUS

Lab Number:

Project Name: SPS TECHNOLOGIES

L2511521 **Project Number: Report Date:** US0043268.2150 03/05/25

SAMPLE RESULTS

Lab ID: Date Collected: L2511521-01 03/03/25 09:00 Client ID: SW5_030325 Date Received: 03/03/25

Not Specified Sample Location: JENKINTOWN, PA Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab)								
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/04/25 07:50	03/04/25 12:09	121,4500CN-CE	JER
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/04/25 07:00	121,4500CN-	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/04/25 07:39	03/04/25 09:28	E(M) 140,1664B	TPR
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	03/04/25 04:15	03/04/25 04:46	121,3500CR-B	CAR

Lab Number:

Project Name: SPS TECHNOLOGIES

L2511521 **Project Number: Report Date:** US0043268.2150 03/05/25

SAMPLE RESULTS

Lab ID: Date Collected: L2511521-02 03/03/25 09:35 Client ID: SW4_030325 Date Received: 03/03/25

Not Specified Sample Location: JENKINTOWN, PA Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab)								
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/04/25 07:50	03/04/25 12:10	121,4500CN-CE	JER
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/04/25 07:00	121,4500CN-	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/04/25 07:39	03/04/25 09:21	E(M) 140,1664B	TPR
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	03/04/25 04:15	03/04/25 04:46	121,3500CR-B	CAR

Project Name: SPS TECHNOLOGIES

Lab Number: L2511521 Report Date: **Project Number:** US0043268.2150 03/05/25

SAMPLE RESULTS

Lab ID: Date Collected: L2511521-03 03/03/25 10:30

Client ID: SW3_030325 Date Received: 03/03/25 Not Specified Sample Location: JENKINTOWN, PA Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	ıb								
Cyanide, Total	0.004	J	mg/l	0.005	0.001	1	03/04/25 07:50	03/04/25 12:11	121,4500CN-CE	JER
Cyanide, Free	0.004	J	mg/l	0.010	0.003	1	-	03/04/25 07:00	121,4500CN- E(M)	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.4	4.4	1.1	03/04/25 07:39	03/04/25 12:27	140,1664B	TPR
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	03/04/25 04:15	03/04/25 04:46	121,3500CR-B	CAR

Lab Number:

Project Name: SPS TECHNOLOGIES

L2511521 **Project Number: Report Date:** US0043268.2150 03/05/25

SAMPLE RESULTS

Lab ID: Date Collected: L2511521-04 03/03/25 11:10

Client ID: SW2_030325 Date Received: 03/03/25 Not Specified Sample Location: JENKINTOWN, PA Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lak)								
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/04/25 07:50	03/04/25 12:12	121,4500CN-CE	JER
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/04/25 07:00	121,4500CN- E(M)	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/04/25 07:39	03/04/25 12:30	140,1664B	TPR
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	03/04/25 04:15	03/04/25 04:47	121,3500CR-B	CAR

Lab Number:

Project Name: SPS TECHNOLOGIES

L2511521 Report Date: **Project Number:** US0043268.2150 03/05/25

SAMPLE RESULTS

Lab ID: Date Collected: L2511521-05 03/03/25 12:30 Client ID: Date Received: SW1_030325 03/03/25

Not Specified Sample Location: JENKINTOWN, PA Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab									
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/04/25 07:50	03/04/25 12:17	121,4500CN-CE	JER
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/04/25 07:00	121,4500CN- E(M)	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/04/25 07:39	03/04/25 12:34	140,1664B	TPR
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	03/04/25 04:15	03/04/25 04:47	121,3500CR-B	CAR

Project Name: SPS TECHNOLOGIES

Lab Number: L2511521 Project Number: US0043268.2150 **Report Date:** 03/05/25

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst				
General Chemistry - West	tborough Lab for sam	ple(s): 01	-05 Ba	tch: WC	G2036277-	1							
Chromium, Hexavalent	ND	mg/l	0.010	0.003	1	03/04/25 04:15	03/04/25 04:45	121,3500CR-B	CAR				
General Chemistry - West	tborough Lab for sam	ple(s): 01	-05 Ba	tch: WC	92036314-	1							
Cyanide, Free	ND	mg/l	0.010	0.003	1	-	03/04/25 07:00	121,4500CN-E(M	1) KAF				
General Chemistry - West	tborough Lab for sam	ple(s): 01	-05 Ba	tch: WC	92036323-	1							
Cyanide, Total	ND	mg/l	0.005	0.001	1	03/04/25 07:50	03/04/25 12:06	121,4500CN-CE	JER				
General Chemistry - West	General Chemistry - Westborough Lab for sample(s): 01-05 Batch: WG2036344-1												
Oil & Grease, Hem-Grav	ND	mg/l	4.0	4.0	1	03/04/25 07:39	03/04/25 09:17	140,1664B	TPR				

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number:

L2511521

Report Date:

Parameter	LCS %Recovery Qual	LCSD %Recovery Qua	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-05	Batch: WG2036277-2				
Chromium, Hexavalent	99	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01-05	Batch: WG2036314-2				
Cyanide, Free	95	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-05	Batch: WG2036323-2				
Cyanide, Total	94	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-05	Batch: WG2036344-2				
Oil & Grease, Hem-Grav	93	-	78-114	-		18

Matrix Spike Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number: L25

L2511521

Report Date: 03/05/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recov Qual Limi	•	RPD Qual Limit
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01-05	QC Batch II	D: WG2036277-4	QC Sample:	L2511521-01	Client ID:	SW5_03032
Chromium, Hexavalent	ND	0.1	0.100	100	-	-	85-11	5 -	20
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01-05	QC Batch II	D: WG2036314-4	QC Sample:	L2511549-01	Client ID:	MS Sample
Cyanide, Free	ND	0.25	0.219	88	-	-	80-12		20
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01-05	QC Batch II	D: WG2036323-3	QC Sample:	L2511521-04	Client ID:	SW2_03032
Cyanide, Total	ND	0.2	0.209	104	-	-	90-11	0 -	30
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01-05	QC Batch II	D: WG2036344-4	QC Sample:	L2511521-02	Client ID:	SW4_03032
Oil & Grease, Hem-Grav	ND	40.8	34	82	-	-	78-11	4 -	18

Lab Duplicate Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number: L2511521

Report Date: 03/05/25

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associate	ted sample(s): 01-05	QC Batch ID:	WG2036277-3	QC Sample:	L2511521-01	Client ID:	SW5_030325
Chromium, Hexavalent	ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab Associate	ted sample(s): 01-05	QC Batch ID:	WG2036314-3	QC Sample:	L2511549-01	Client ID:	DUP Sample
Cyanide, Free	ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab Associate	ted sample(s): 01-05	QC Batch ID:	WG2036323-4	QC Sample:	L2511521-04	Client ID:	SW2_030325
Cyanide, Total	ND		ND	mg/l	NC		30
General Chemistry - Westborough Lab Associate	ted sample(s): 01-05	QC Batch ID:	WG2036344-3	QC Sample:	L2511521-01	Client ID:	SW5_030325
Oil & Grease, Hem-Grav	ND		ND	mg/l	NC		18

SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number: L2511521 **Report Date:** 03/05/25

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Project Name:

Custody Seal Cooler Present/Intact Α В Present/Intact

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2511521-01A	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Present/Intact		624.1-PPM(7)
L2511521-01B	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Present/Intact		624.1-PPM(7)
L2511521-01C	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Present/Intact		624.1-PPM(7)
L2511521-01D	Plastic 250ml HNO3 preserved	Α	<2	<2	2.3	Υ	Present/Intact		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)
L2511521-01E	Plastic 250ml unpreserved	Α	7	7	2.3	Υ	Present/Intact		-
L2511521-01F	Plastic 250ml NaOH preserved	Α	>12	>12	2.3	Υ	Present/Intact		TCN-4500(14)
L2511521-01G	Plastic 500ml unpreserved	Α	7	7	2.3	Υ	Present/Intact		HEXCR-3500(1),FCN(1)
L2511521-01H	Amber 1L HCI preserved	Α	NA		2.3	Υ	Present/Intact		OG-1664(28)
L2511521-01J	Amber 1L HCI preserved	Α	NA		2.3	Υ	Present/Intact		OG-1664(28)
L2511521-01X	Plastic 120ml HNO3 preserved Filtrates	Α	NA		2.3	Υ	Present/Intact		CR-2008S(180),NI-2008S(180)
L2511521-02A	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Present/Intact		624.1-PPM(7)
L2511521-02B	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Present/Intact		624.1-PPM(7)
L2511521-02C	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Present/Intact		624.1-PPM(7)
L2511521-02D	Plastic 250ml HNO3 preserved	Α	<2	<2	2.3	Y	Present/Intact		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)
L2511521-02E	Plastic 250ml unpreserved	Α	7	7	2.3	Υ	Present/Intact		-
L2511521-02F	Plastic 250ml NaOH preserved	Α	>12	>12	2.3	Υ	Present/Intact		TCN-4500(14)
L2511521-02G	Plastic 500ml unpreserved	Α	7	7	2.3	Υ	Present/Intact		HEXCR-3500(1),FCN(1)
L2511521-02H	Amber 1L HCI preserved	Α	NA		2.3	Υ	Present/Intact		OG-1664(28)
L2511521-02J	Amber 1L HCI preserved	Α	NA		2.3	Υ	Present/Intact		OG-1664(28)
L2511521-02X	Plastic 120ml HNO3 preserved Filtrates	Α	NA		2.3	Υ	Present/Intact		CR-2008S(180),NI-2008S(180)
L2511521-03A	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Present/Intact		624.1-PPM(7)

Lab Number: L2511521

Report Date: 03/05/25

Project Name: SPS TECHNOLOGIESProject Number: US0043268.2150

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2511521-03B	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Present/Intact		624.1-PPM(7)
L2511521-03C	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Present/Intact		624.1-PPM(7)
L2511521-03D	Plastic 250ml HNO3 preserved	Α	<2	<2	2.3	Υ	Present/Intact		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)
L2511521-03E	Plastic 250ml unpreserved	Α	7	7	2.3	Υ	Present/Intact		-
L2511521-03F	Plastic 250ml NaOH preserved	Α	>12	>12	2.3	Υ	Present/Intact		TCN-4500(14)
L2511521-03G	Plastic 500ml unpreserved	Α	7	7	2.3	Υ	Present/Intact		HEXCR-3500(1),FCN(1)
L2511521-03H	Amber 1L HCl preserved	Α	NA		2.3	Υ	Present/Intact		OG-1664(28)
L2511521-03J	Amber 1L HCl preserved	Α	NA		2.3	Υ	Present/Intact		OG-1664(28)
L2511521-03X	Plastic 120ml HNO3 preserved Filtrates	Α	NA		2.3	Υ	Present/Intact		CR-2008S(180),NI-2008S(180)
L2511521-04A	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Present/Intact		624.1-PPM(7)
L2511521-04B	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Present/Intact		624.1-PPM(7)
L2511521-04C	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Present/Intact		624.1-PPM(7)
L2511521-04D	Plastic 250ml HNO3 preserved	В	<2	<2	2.8	Υ	Present/Intact		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)
L2511521-04E	Plastic 250ml unpreserved	В	7	7	2.8	Υ	Present/Intact		-
L2511521-04F	Plastic 250ml NaOH preserved	В	>12	>12	2.8	Υ	Present/Intact		TCN-4500(14)
L2511521-04G	Plastic 500ml unpreserved	В	7	7	2.8	Υ	Present/Intact		HEXCR-3500(1),FCN(1)
L2511521-04H	Amber 1L HCl preserved	В	NA		2.8	Υ	Present/Intact		OG-1664(28)
L2511521-04J	Amber 1L HCl preserved	В	NA		2.8	Υ	Present/Intact		OG-1664(28)
L2511521-04X	Plastic 120ml HNO3 preserved Filtrates	В	NA		2.8	Υ	Present/Intact		CR-2008S(180),NI-2008S(180)
L2511521-05A	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Present/Intact		624.1-PPM(7)
L2511521-05B	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Present/Intact		624.1-PPM(7)
L2511521-05C	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Present/Intact		624.1-PPM(7)
L2511521-05D	Plastic 250ml HNO3 preserved	В	<2	<2	2.8	Υ	Present/Intact		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)
L2511521-05E	Plastic 250ml unpreserved	В	7	7	2.8	Υ	Present/Intact		-
L2511521-05F	Plastic 250ml NaOH preserved	В	>12	>12	2.8	Υ	Present/Intact		TCN-4500(14)
L2511521-05G	Plastic 500ml unpreserved	В	7	7	2.8	Υ	Present/Intact		HEXCR-3500(1),FCN(1)
L2511521-05H	Amber 1L HCl preserved	В	NA		2.8	Υ	Present/Intact		OG-1664(28)

Lab Number: L2511521

Report Date: 03/05/25

Project Name: SPS TECHNOLOGIESProject Number: US0043268.2150

Container Information				Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	tial Final Temp I pH deg C Pr		Pres	Seal	Date/Time	Analysis(*)
L2511521-05J	Amber 1L HCl preserved	В	NA		2.8	Υ	Present/Intact		OG-1664(28)
L2511521-05X	Plastic 120ml HNO3 preserved Filtrates	В	NA		2.8	Υ	Present/Intact		CR-2008S(180),NI-2008S(180)
L2511521-06A	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Present/Intact		624.1-PPM(7)
L2511521-06B	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Present/Intact		624.1-PPM(7)

Project Name: Lab Number: SPS TECHNOLOGIES L2511521 US0043268.2150 **Report Date: Project Number:** 03/05/25

GLOSSARY

Acronyms

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes. LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

REFERENCES

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 107 Calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 1664,Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

LIMITATION OF LIABILITIES

Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at it's own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Pace Analytical Services LLC

Facility: Northeast

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 27

Published Date: 01/24/2025

Page 1 of 2

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270E:** NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

MADEP-APH.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

The following test method is not included in our New Jersey Secondary NELAP Scope of Accreditation:

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Determination of Selected Perfluorinated Alkyl Substances by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry Isotope Dilution (via Alpha SOP 23528)

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

Document Type: Form Pre-Qualtrax Document ID: 08-113

Pace Analytical Services LLC

Facility: Northeast

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 27

Published Date: 01/24/2025

Page 2 of 2

Certification IDs:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

CT PH-0826, IL 200077, IN C-MA-03, KY JY98045, ME MA00086, MD 348, MA M-MA086, NH 2064, NJ MA935, NY 11148, NC (DW) 25700, NC (NPW/SCM) 666, OR MA-1316, PA 68-03671, RI LAO00065, TX T104704476, VT VT-0935, VA 460195

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

CT PH-0825, ANÁB/DoD L2474, IL 200081, IN C-MA-04, KY KY98046, LA 3090, ME MA00030, MI 9110, MN 025-999-495, NH 2062, NJ MA015, NY 11627, NC (NPW/SCM) 685, OR MA-0262, PA 68-02089, RI LAO00299, TX T-104704419, VT VT-0015, VA 460194, WA C954

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048

ANAB/DoD L2474, ME MA01156, MN 025-999-498, NH 2249, NJ MA025, NY 12191, OR 4203, TX T104704583, VA 460311, WA C1104.

For a complete listing of analytes and methods, please contact your Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

	Anna Castrala arang atau atau atau atau		1000000												-	36	IIai_IV	0.03052512.36	
ΔLPHA	CHAIN OF	CUSTO	OY PA	NGE\	OF	Dat	e Re	c'd in	Lab:	03	3/00	11:	25		,	LPH	IA Job	#:125/152	1
WESTBORO, MA		oject Informat				Re	port	Info	rmat	ion -	Data	Deli	vera	bles		Billin	g Infor	mation	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	ject Name: SP	5 Tad	analis	· m	0	FAX			D EN	/AIL			The state of the s	Ę	Sam	e as Clie	ent info PO#:	
Client Information	on Pro	eject Location: 3	in lint	NO 16	4		ADE	x		□ Add	i'l De	livera	bles						
Client: WSP		oject#: VS00				Reg	ulat	ory R	equi	ireme	ents/	Repo	ort L	imits		=			
Address: 10 La	ed Center Drive Pro	ject Manager: \	ouch 1	da()	. 0	State		d Pro	gram			0	riter	а					
Suite 200	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PHA Quote #:																	
Phone: \$56	-793 -2005 T	urn-Around Tir	ne						,	S									
Email Torah, kuc	(DCI : b. Com	Standard	RUSH (only o	confirmed if pre-a	pprovedl)			5	. 5.6.	0	20/	57	50	31		10	3		т
	ve been previously analyzed by Alpha	te Due:		Time:	1 Day		SIS	1000	0351	C.C.	0	1 28	3/	7/	1	18	13	SAMPLE HANDLING	O T A L
Other Project S	pecific Requirements/Commen	ts/Detection Li	mits:			ANAIL	Ge.	7 - 7	8	0 2	THE CA	Willel of	C. 1.00	624	624	1623 E	Ti /	Filtration Done Not needed	î *
240	n one coolse	CAL V				1	2)	14.	15/	7	33.1			m/	1	2	1/	☐ Lab to do Preservation	0
ALPHA Lab ID	told will be Lab		144	0 1		1	5/	7/-	-/-	5/2	1/-	2/-	3/11	7 3	-	1 1	/	☐ Lab to do	Ť
(Lab Use Only)	Sample ID	Date	ection Time	Sample Matrix	Sampler's Initials	0	1.3	15	1	75	D. 350	District	2	10 F	John J	5	Sa	(Please specify below) Imple Specific Comments	E S
11521-01	SW5-030325	313125	9:00	SW	TET	x	×	×	×	Х	×	×	7			K.	DH	5.86	9
702	544-030325	313125	1:35	SW	JET	×	×	X	X	>	y	×	X				DH	663	9
-03	5W3-030325	3/3/25	10:30	SW	JET	×	×	×	ox	×	Y	4	y	×	X ·	(PH	7.01	9
-04	5W2-030325	313125	11:10	SW	JET	×	×	×	4	×	4	*	4	× 3	()	c	40	7.43	9
75	SW1-030325	313125		SW	JET	X	×	×	×	¥	1	×	1	* -	x -	-	Ha	7.84	9
-oh	TBSW-630325	313125		W	_								X	X			P	.,	3
			7-1																
				20,500,000	ainer Type reservative	AB	PA	P	PC	P	D A	P	U II	U	Ì		plete	ise print clearly, legibly and ely. Samples can not be lo	gged
Page 44 of 45	The land	elinquished By:	15	3131 3131	1836	au	70	Re V W	rceiye	Rec	040		1	73/2 13/2	te/Ti		All s Alph See	nd turnaround time clock with until any ambiguities are reamples submitted are subjects Terms and Conditions. The reverse side.	esolved ect to

CIT	0	H)	W 7'	CTWS A	*
OI	U	IJ	Y	SEA	dL.

Signature

Cooler 1

CUSTODY SEAL

Signature -

Cooler 2

Date_

Signature

Coolex 2

ANALYTICAL REPORT

Lab Number: L2511549

Client: WSP USA Inc.

401 Route 73 North

Suite 205

Marlton, NJ 08053

ATTN: Tovah Karl

Phone: () -

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Report Date: 03/05/25

The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

 Lab Number:
 L2511549

 Report Date:
 03/05/25

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2511549-01	OF006_030325	WATER	JENKINTOWN, PA	03/03/25 10:45	03/03/25
L2511549-02	TBOF_030325	WATER	JENKINTOWN, PA	03/03/25 00:00	03/03/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Todo of that I roject Management at 600 024 0220 with any questions.										

Please contact Project Management at 800-624-9220 with any questions

Project Name:SPS TECHNOLOGIESLab Number:L2511549Project Number:US0043268.2150Report Date:03/05/25

Case Narrative (continued)

Report Submission

March 05, 2025: This final report includes the results of all requested analyses.

March 04, 2025: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Lelly Well Kelly O'Neill

Authorized Signature:

Title: Technical Director/Representative

Date: 03/05/25

Pace

ORGANICS

VOLATILES

03/03/25 10:45

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

SAMPLE RESULTS

Lab Number: L2511549

Report Date: 03/05/25

Lab ID: L2511549-01

Client ID: OF006_030325 Sample Location: JENKINTOWN, PA Date Received: 03/03/25 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 03/04/25 12:22

Analyst: JKH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
Toluene	ND		mg/l	0.0010	0.00031	1				
2-Butanone	ND		mg/l	0.010	0.0010	1				

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Pentafluorobenzene	85		60-140
Fluorobenzene	75		60-140
4-Bromofluorobenzene	118		60-140

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

SAMPLE RESULTS

Lab Number: L2511549

Report Date: 03/05/25

Lab ID: L2511549-02 Date Collected: 03/03/25 00:00

TBOF_030325 Client ID: Date Received: 03/03/25 Field Prep: Sample Location: JENKINTOWN, PA Not Specified

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 03/04/25 08:35

Analyst: JKH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
Toluene	ND		mg/l	0.0010	0.00031	1				
2-Butanone	ND		mg/l	0.010	0.0010	1				

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Pentafluorobenzene	86		60-140
Fluorobenzene	75		60-140
4-Bromofluorobenzene	115		60-140

Project Name: SPS TECHNOLOGIES **Lab Number:** L2511549

Project Number: US0043268.2150 **Report Date:** 03/05/25

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 03/04/25 08:02

Analyst: JKH

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	borough Lab	for sample	e(s): 01-02	Batch:	WG2036546-4	
Toluene	ND		mg/l	0.0010	0.00031	
2-Butanone	ND		mg/l	0.010	0.0010	

	Acceptance					
Surrogate	%Recovery 0	Qualifier Criteria				
Pentafluorobenzene	95	60-140				
Fluorobenzene	83	60-140				
4-Bromofluorobenzene	110	60-140				

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number:

L2511549

03/05/25

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborou	gh Lab Associat	ed sample(s)	: 01-02 Bato	h: WG20	36546-3				
Toluene	110		-		70-130	-		41	
2-Butanone	82		-		60-140	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Acceptance Qual Criteria
Pentafluorobenzene	98		60-140
Fluorobenzene	93		60-140
4-Bromofluorobenzene	109		60-140

METALS

SAMPLE RESULTS

 Lab ID:
 L2511549-01
 Date Collected:
 03/03/25 10:45

 Client ID:
 OF006_030325
 Date Received:
 03/03/25

 Sample Location:
 JENKINTOWN, PA
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansfield Lab											
Aluminum, Total	0.00772	J	mg/l	0.01000	0.00327	1	03/04/25 07:33	03/04/25 11:59	EPA 3005A	3,200.8	NTB
Chromium, Total	0.00023	J	mg/l	0.00100	0.00017	1	03/04/25 07:33	03/04/25 11:59	EPA 3005A	3,200.8	NTB
Copper, Total	0.00109		mg/l	0.00100	0.00038	1	03/04/25 07:33	03/04/25 11:59	EPA 3005A	3,200.8	NTB
Iron, Total	0.2461		mg/l	0.05000	0.01910	1	03/04/25 07:33	03/04/25 11:59	EPA 3005A	3,200.8	NTB
Lead, Total	ND		mg/l	0.00100	0.00034	1	03/04/25 07:33	03/04/25 11:59	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00157	J	mg/l	0.00200	0.00055	1	03/04/25 07:33	03/04/25 11:59	EPA 3005A	3,200.8	NTB
Zinc, Total	0.02318		mg/l	0.00500	0.00341	1	03/04/25 07:33	03/04/25 11:59	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculation	n) - Mansfi	eld Lab								
Hardness	216.4		mg/l	0.5400	NA	1	03/04/25 07:33	03/04/25 11:59	EPA 3005A	3,200.8	NTB
General Chemistry	- Mansfield	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/04/25 11:59	NA	107,-	
Dissolved Metals - I	Mansfield	Lab									
Chromium, Dissolved	ND		mg/l	0.0010	0.0002	1	03/05/25 06:11	03/05/25 10:20	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	ND		mg/l	0.0020	0.0006	1	03/05/25 06:11	03/05/25 10:20	EPA 3005A	3,200.8	NTB

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number:

L2511549

Report Date: 03/05/25

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	ld Lab for sample(s):	01 Bato	h: WG20	36320-	1				
Aluminum, Total	ND	mg/l	0.01000	0.00327	1	03/04/25 07:33	03/04/25 11:19	3,200.8	NTB
Chromium, Total	ND	mg/l	0.00100	0.00017	' 1	03/04/25 07:33	03/04/25 11:19	3,200.8	NTB
Copper, Total	ND	mg/l	0.00100	0.00038	3 1	03/04/25 07:33	03/04/25 11:19	3,200.8	NTB
Iron, Total	ND	mg/l	0.05000	0.01910) 1	03/04/25 07:33	03/04/25 11:19	3,200.8	NTB
Lead, Total	ND	mg/l	0.00100	0.00034	1	03/04/25 07:33	03/04/25 11:19	3,200.8	NTB
Nickel, Total	ND	mg/l	0.00200	0.00055	5 1	03/04/25 07:33	03/04/25 11:19	3,200.8	NTB
Zinc, Total	ND	mg/l	0.00500	0.00341	1	03/04/25 07:33	03/04/25 11:19	3,200.8	NTB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	l Analyst
Total Hardness (by cal	culation) - Mansfield L	ab for sa	mple(s):	01 Ba	tch: WG20	036320-1			
Hardness	ND	mg/l	g/l 0.5400 NA		1	03/04/25 07:33	03/04/25 11:19	3,200.8	NTB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	l Analyst
Dissolved Metals - Ma	ansfield Lab	for sample	e(s): 01	Batch: V	VG2036	490-1				
Chromium, Dissolved	ND		mg/l	0.0010	0.0002	1	03/05/25 06:11	03/05/25 09:38	3,200.8	NTB
Nickel, Dissolved	ND		mg/l	0.0020	0.0006	1	03/05/25 06:11	03/05/25 09:38	3,200.8	NTB

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number:

L2511549

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated samp	ole(s): 01 Ba	tch: WG20	36320-2					
Aluminum, Total	101		-		85-115	-		
Chromium, Total	102		-		85-115	-		
Copper, Total	106		-		85-115	-		
Iron, Total	108		-		85-115	-		
Lead, Total	94		-		85-115	-		
Nickel, Total	104		-		85-115	-		
Zinc, Total	104		-		85-115	-		
Total Hardness (by calculation) - Mansfield La	b Associated	sample(s):	01 Batch: WG	2036320-2				
Hardness	96		-		85-115	-		
Dissolved Metals - Mansfield Lab Associated	sample(s): 01	Batch: W	/G2036490-2					
Chromium, Dissolved	107		-		85-115	-		
Nickel, Dissolved	105		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number:

L2511549

Report Date:

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qua	RPD I Limits
Total Metals - Mansfield La	ab Associated sam	ple(s): 01	QC Batch II	D: WG203632	0-3	QC Sample	: L2511521-01	Client ID: MS Sa	ample	
Aluminum, Total	0.0091J	2	2.013	101		-	-	70-130	-	20
Chromium, Total	0.00030J	0.2	0.2056	103		-	-	70-130	-	20
Copper, Total	0.0021	0.25	0.2666	106		-	-	70-130	-	20
Iron, Total	0.1351	1	1.209	107		-	-	70-130	-	20
Lead, Total	ND	0.53	0.5110	96		-	-	70-130	-	20
Nickel, Total	0.00191J	0.5	0.5220	104		-	-	70-130	-	20
Zinc, Total	0.0113	0.5	0.5254	103		-	-	70-130	-	20
otal Hardness (by calcula	ation) - Mansfield L	ab Associa	ted sample(s	s): 01 QC Ba	tch ID:	WG203632	20-3 QC San	nple: L2511521-01	Client ID:	MS Sample
Hardness	211.3	66.2	274.2	95		-	-	70-130	-	20
Dissolved Metals - Mansfie	eld Lab Associated	sample(s):	01 QC Ba	tch ID: WG20	36490-	3 QC Sa	mple: L251152	1-01 Client ID: M	1S Sample	
Chromium, Dissolved	ND	0.2	0.2073	104		-	-	70-130	-	20
Nickel, Dissolved	0.0007J	0.5	0.5271	105		-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES
Project Number: US0043268.2150

Lab Number:

L2511549

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RP	D Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG	2036320-4 QC Sample: L2	511521-01 Clie	ent ID: DU	P Sample	
Chromium, Total	0.00030J	0.00023J	mg/l	NC		20
Nickel, Total	0.00191J	0.00215	mg/l	NC		20
Total Hardness (by calculation) - Mansfield Lab Associate	ed sample(s): 01	QC Batch ID: WG2036320-4	QC Sample:	L2511521	I-01 Client ID:	DUP Sample
Hardness	211.3	212.5	mg/l	1		20
Dissolved Metals - Mansfield Lab Associated sample(s):	01 QC Batch ID:	WG2036490-4 QC Sample	: L2511521-01	Client ID:	DUP Sample	
Chromium, Dissolved	ND	ND	mg/l	NC		20
Nickel, Dissolved	0.0007J	0.0007J	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Lab Number:

Project Name: SPS TECHNOLOGIES

L2511549 **Project Number: Report Date:** US0043268.2150 03/05/25

SAMPLE RESULTS

Lab ID: Date Collected: L2511549-01 03/03/25 10:45

Client ID: OF006_030325 Date Received: 03/03/25 Not Specified Sample Location: JENKINTOWN, PA Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lal	b								
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	03/04/25 06:25	121,2540D	BAY
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/04/25 07:50	03/04/25 12:18	121,4500CN-CE	JER
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/04/25 07:00	121,4500CN-	KAF
Nitrogen, Nitrate/Nitrite	3.9		mg/l	0.10	0.046	1	-	03/04/25 06:53	E(M) 44,353.2	KAF
Chemical Oxygen Demand	8.3	J	mg/l	20	6.0	1	03/04/25 09:20	03/04/25 12:25	44,410.4	CVN
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/04/25 07:39	03/04/25 12:35	140,1664B	TPR
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	03/04/25 04:15	03/04/25 04:47	121,3500CR-B	CAR

L2511549

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150 Report Date:

Report Date: 03/05/25

Lab Number:

Method Blank Analysis Batch Quality Control

Parameter	Result Qı	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab	for sam	nple(s): 01	Batch:	WG20	36277-1				
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	03/04/25 04:15	03/04/25 04:45	121,3500CR-B	CAR
General Chemistry - V	Westborough Lab	for sam	nple(s): 01	Batch:	WG20	36279-1				
Nitrogen, Nitrate/Nitrite	ND		mg/l	0.10	0.046	1	-	03/04/25 06:13	44,353.2	KAF
General Chemistry - V	Westborough Lab	for sam	nple(s): 01	Batch:	WG20	36310-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	03/04/25 06:25	121,2540D	BAY
General Chemistry - V	Westborough Lab	for sam	nple(s): 01	Batch:	WG20	36314-1				
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/04/25 07:00	121,4500CN-E(N	l) KAF
General Chemistry - V	Westborough Lab	for sam	nple(s): 01	Batch:	WG20	36323-1				
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/04/25 07:50	03/04/25 12:06	121,4500CN-CE	JER
General Chemistry - V	Westborough Lab	for sam	nple(s): 01	Batch:	WG20	36344-1				
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/04/25 07:39	03/04/25 09:17	140,1664B	TPR
General Chemistry - V	Westborough Lab	for sam	nple(s): 01	Batch:	WG20	36389-1				
Chemical Oxygen Demand	ND		mg/l	20	6.0	1	03/04/25 09:20	03/04/25 12:25	44,410.4	CVN

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number:

L2511549

Report Date:

Parameter	LCS %Recovery Qu	LCSD al %Recovery (%Recovery Qual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG2036277-2				
Chromium, Hexavalent	99	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG2036279-2				
Nitrogen, Nitrate/Nitrite	100	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG2036310-2				
Solids, Total Suspended	96	-	80-120	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG2036314-2				
Cyanide, Free	95	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG2036323-2				
Cyanide, Total	94	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG2036344-2				
Oil & Grease, Hem-Grav	93	-	78-114	-		18
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG2036389-2				
Chemical Oxygen Demand	96	-	90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number:

L2511549

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westboro	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	WG20362	277-4	QC Sample: L25	11521-	01 Client	ID: MS	Samp	e
Chromium, Hexavalent	ND	0.1	0.100	100		-	-		85-115	-		20
General Chemistry - Westboro	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	WG20362	279-4	QC Sample: L25	11549-	01 Client	ID: OF	006_03	30325
Nitrogen, Nitrate/Nitrite	3.9	4	7.5	90		-	-		80-120	-		20
General Chemistry - Westboro	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	WG20363	314-4	QC Sample: L25	11549-	01 Client	ID: OF	006_03	30325
Cyanide, Free	ND	0.25	0.219	88		-	-		80-120	-		20
General Chemistry - Westboro	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	WG20363	323-3	QC Sample: L25	11521-	04 Client	ID: MS	Samp	e
Cyanide, Total	ND	0.2	0.209	104		-	-		90-110	-		30
General Chemistry - Westboro	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	WG20363	344-4	QC Sample: L25	11521-	02 Client	ID: MS	Samp	e
Oil & Grease, Hem-Grav	ND	40.8	34	82		-	-		78-114	-		18
General Chemistry - Westboro	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	WG20363	889-3	QC Sample: L25	11549-	01 Client	ID: OF	006_03	30325
Chemical Oxygen Demand	8.3J	238	260	110		-	-		90-110	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES
Project Number: US0043268.2150

Lab Number:

L2511549

Report Date:

Parameter	Native	Sample	Duplicate Sam	ple Units	s RPD	Qual	RPD Limits
General Chemistry - Westborough Lab As	ssociated sample(s): 01	QC Batch ID:	WG2036277-3	QC Sample:	L2511521-01	Client ID:	DUP Sample
Chromium, Hexavalent	N	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab As	ssociated sample(s): 01	QC Batch ID:	WG2036279-3	QC Sample:	L2511549-01	Client ID:	OF006_030325
Nitrogen, Nitrate/Nitrite	3	3.9	3.9	mg/l	0		20
General Chemistry - Westborough Lab As	ssociated sample(s): 01	QC Batch ID:	WG2036310-3	QC Sample:	L2469027-93	Client ID:	DUP Sample
Solids, Total Suspended	20	000	2300	mg/l	14		32
General Chemistry - Westborough Lab As	ssociated sample(s): 01	QC Batch ID:	WG2036314-3	QC Sample:	L2511549-01	Client ID:	OF006_030325
Cyanide, Free	N	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab As	ssociated sample(s): 01	QC Batch ID:	WG2036323-4	QC Sample:	L2511521-04	Client ID:	DUP Sample
Cyanide, Total	N	ND	ND	mg/l	NC		30
General Chemistry - Westborough Lab As	ssociated sample(s): 01	QC Batch ID:	WG2036344-3	QC Sample:	L2511521-01	Client ID:	DUP Sample
Oil & Grease, Hem-Grav	N	ND	ND	mg/l	NC		18
General Chemistry - Westborough Lab As	ssociated sample(s): 01	QC Batch ID:	WG2036389-4	QC Sample:	L2511549-01	Client ID:	OF006_030325
Chemical Oxygen Demand	8.	.3J	10.J	mg/l	NC		20

Lab Number: L2511549

Report Date: 03/05/25

Sample Receipt and Container Information

Were project specific reporting limits specified?

SPS TECHNOLOGIES

Cooler Information

Project Name:

Cooler Custody Seal
A Present/Intact

Project Number: US0043268.2150

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2511549-01A	Vial Na2S2O3 preserved	Α	NA		2.8	Υ	Present/Intact		624.1-PPM(7)
L2511549-01B	Vial Na2S2O3 preserved	Α	NA		2.8	Υ	Present/Intact		624.1-PPM(7)
L2511549-01C	Vial Na2S2O3 preserved	Α	NA		2.8	Υ	Present/Intact		624.1-PPM(7)
L2511549-01D	Plastic 250ml NaOH preserved	Α	>12	>12	2.8	Υ	Present/Intact		TCN-4500(14)
L2511549-01E	Plastic 250ml H2SO4 preserved	Α	<2	<2	2.8	Υ	Present/Intact		NO3/NO2-353(28),COD-410(28)
L2511549-01F	Plastic 250ml unpreserved	Α	7	7	2.8	Υ	Present/Intact		-
L2511549-01G	Plastic 250ml HNO3 preserved	А	<2	<2	2.8	Υ	Present/Intact		AL-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),HARDT- 2008(180),FE-2008T(180),PB- 2008T(180),CR-2008T(180)
L2511549-01H	Plastic 500ml unpreserved	Α	7	7	2.8	Υ	Present/Intact		HEXCR-3500(1),FCN(1)
L2511549-01J	Amber 1L HCI preserved	Α	NA		2.8	Υ	Present/Intact		OG-1664(28)
L2511549-01K	Amber 1L HCI preserved	Α	NA		2.8	Υ	Present/Intact		OG-1664(28)
L2511549-01L	Plastic 950ml unpreserved	Α	7	7	2.8	Υ	Present/Intact		TSS-2540(7)
L2511549-01X	Plastic 120ml HNO3 preserved Filtrates	Α	NA		2.8	Υ	Present/Intact		CR-2008S(180),NI-2008S(180)
L2511549-02A	Vial Na2S2O3 preserved	Α	NA		2.8	Υ	Present/Intact		624.1-PPM(7)
L2511549-02B	Vial Na2S2O3 preserved	Α	NA		2.8	Υ	Present/Intact		624.1-PPM(7)

Project Name: Lab Number: SPS TECHNOLOGIES L2511549 US0043268.2150 **Report Date: Project Number:** 03/05/25

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

> - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

> Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

REFERENCES

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 1664,Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

LIMITATION OF LIABILITIES

Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at it's own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Pace Analytical Services LLC

Facility: **Northeast**

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 27

Published Date: 01/24/2025

Page 1 of 2

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270E:** NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

MADEP-APH.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

The following test method is not included in our New Jersey Secondary NELAP Scope of Accreditation:

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Determination of Selected Perfluorinated Alkyl Substances by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry Isotope Dilution (via Alpha SOP 23528)

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

 ${\sf EPA~180.1, SM2130B, SM4500Cl-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B}$

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II,

Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

Document Type: Form Pre-Qualtrax Document ID: 08-113

Pace Analytical Services LLC

Facility: Northeast Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 27

Published Date: 01/24/2025

Page 2 of 2

Certification IDs:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

CT PH-0826, IL 200077, IN C-MA-03, KY JY98045, ME MA00086, MD 348, MA M-MA086, NH 2064, NJ MA935, NY 11148, NC (DW) 25700, NC (NPW/SCM) 666, OR MA-1316, PA 68-03671, RI LAO00065, TX T104704476, VT VT-0935, VA 460195

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

CT PH-0825, ANAB/DoD L2474, IL 200081, IN C-MA-04, KY KY98046, LA 3090, ME MA00030, MI 9110, MN 025-999-495, NH 2062, NJ MA015, NY 11627, NC (NPW/SCM) 685, OR MA-0262, PA 68-02089, RI LAO00299, TX T-104704419, VT VT-0015, VA 460194, WA C954

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048

ANAB/DoD L2474, ME MA01156, MN 025-999-498, NH 2249, NJ MA025, NY 12191, OR 4203, TX T104704583, VA 460311, WA C1104.

For a complete listing of analytes and methods, please contact your Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Serial No:03052512:37 CHAIN OF CUSTODY PAGE 1 OF 2 ALPHA Job #: 201549 Date Rec'd in Lab: 12 04 *********** **Billing Information** Report Information - Data Deliverables Project Information WESTBORO, MA MANSFIELD, MA TEL: 508-898-9220 TEL: 508-822-9300 PO #: SPS Technologies ☐ Same as Client info Project Name: ☐ FAX □ EMAIL FAX: 508-898-9193 FAX: 508-822-3288 ☐ ADEx ☐ Add'l Deliverables Client Information Project Location: Jenkintown, PA Regulatory Requirements/Report Limits Project #: US 0043268, 2150 Client: WSP USA Inc. State /Fed Program Criteria to Lake Center Dr. Project Manager: Toyah Katl Address: PA Suite 205, Markon, NJ 02053 ALPHA Quote #: 256-793-2005 Phone: **Turn-Around Time** 856 - 793 - 2006 Fax: □ Standard RUSH (any continued if pre-approved) tough. karl @ WSP.com Email: stacy - mason (wsp.com OTAL Time: 1 DAY Date Due: SAMPLE HANDLING These samples have been previously analyzed by Alpha Filtration Other Project Specific Requirements/Comments/Detection Limits: ☐ Done * Attorney - Client priviledged + confidential □ Not needed All VDA, in one cooler ☐ Lab to do Preservation Dissolved metals will be lab filtered Tolvene Lab to do MEK (Please specify below) ALPHA Lab ID Sample Collection Sampler's Sample ID (Lab Use Only) Matrix Sample Specific Comments Date Time Initials P#: 7.08 3/3/25 0F006 _ 030325 1045 SW AKM X 11 X 3/3/25 X 2 W X TBOF_ 030325 V Container Type Please print clearly, legibly and completely. Samples can not be logged B C C # C Preservative in and turnaround time clock will not Date/Time start until any ambiguities are resolved. Date/Time Relinquished By: All samples submitted are subject to Alpha's Terms and Conditions. See reverse side. Page 30 of 32

My 03/04/25 02:05

														100			36	ilai_ivo	0.030525	12.31	
ΔLPHA	CHAIN O	F CUS	STOE	Y P	AGE_2	OF_2	Da	te Re	c'd in	Lab:	0	3/0	4	120	-	,	LPF	IA Job	#: 120	5/154	9
WESTBORO, MA	MANSFIELD, MA	Project	Informati	on			Re	epor	t Info	rmat	ion -	Data	Del	ivera	bles		Billin	g Inforr	nation		
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Na	me: SPS	Techn	ologies		0	FAX			O E	MAIL		an a second		0	Sam	e as Clie	nt info P	O #:	
Client Informatio			cation:	7,500,100,700,700			0	ADE	x	1	□ Ad	d'I De	elivera	ables							
Client: WSP U	ISA Inc.	Project #:		43268			Reg	gulat	tory f	Requ	irem	ents/	Rep	ort L	imits						
	we Center Dr.	Project Ma	acasani s	Tovah V	01 95		Stat	te /Fe	d Pro				(Criteri	a						
	205, Maritan, NJ 08053	ALPHA Q		to around a	440					PA	-	-		-	-	-	-	-			
orthography the control of	793 - 2005	Courses South	ound Tim	ne																	
	793 - 2006			/																	
	Mason Q Wsp.com we been previously analyzed by Alpha	□ Standar		RUSH (anly	Time: {			SIS	- EMP	£33.7	£300.0	O.	oa/	Co./	Back.	7	/	//	SAMPL	E HANDLING	Т О Т
Other Project S	pecific Requirements/Commocified provided provided per content. The one content. The metals will be labely	Confiden		mits:	114		ANAL	Sal gues a LYSIS	The Make Show	Alumicous N	Copper	/4	Sec. Lead To	etter. Gram	Brown Co.	//	//	//	Filtration Done Not n Lab t Preserv Lab t	e needed o do ration	и В О Т
ALPHA Lab ID (Lab Use Only)	Sample ID		Colle Date	ction Time	Sample Matrix	Sampler's Initials	640		P P	1	100	Take To	Sections	\$	//	//		Sa	(Please spec	100700000	E S
11549-01	0F006-030325		3/3/25	1045	SW	AKM	Х	X	X	X	X	x	X					2H:	7.08		11
-0)	TBOF_036325		3/3/25	~	W	-										T		1	1		2
	5002 3 010 3 000 5 11 3 00 5 2														1	1	+	1			
																+	+				+
							-	-	-	-					+	+	+	-			+
			_		-	-	-	-	-					\rightarrow	+	+	+	-			+
						1	1		1						4	4	4	-			1
														_		-	+	-			+
					-				-					_							+
																1	1				1
//				Г	Cont	ainer Type	p	Þ	P	P	P	P	P							arly, legibly and	
	- 0		1		Pr	eservative	J	D	С	C	С	C	A							s can not be lo	
		Relinquis	hed By:		Dat	te/Time (00	1		eceiv	d By	1	1		y P	ate/T	me	start	until any ar	mbiguities are r mitted are subj	esolve
		M.	fr d	Det	2/7	LINCX		he	M	NV	1 4	LT (C		3/3	-)	160	Alph		nd Conditions.	
Page 31 of 32	CT-07)	C	,	3 600	23	1130	a	1	a C	-	Rec	re			3/30	3	3	00	reverse sit	0.	
<u> </u>	un	-10.	- Pac	e	3/3/	2800	9	acr.	341	150	las.	Er.		3	Lype	5 0	015	m	9 03/	4/00 021	20

CUSTODY SEAL

Signature -

Signature